
Chapel Domain Documentation
Release 0.0.15

Chapel Team

2018-10-16

Contents

1 Installation 3

2 Getting Started 5
2.1 Chapel Domain Reference . 5
2.2 Developer Documentation . 11

Python Module Index 13

i

ii

Chapel Domain Documentation, Release 0.0.15

Chapel domain for Sphinx! Document Chapel modules and APIs using the Sphinx tool suite.

Package documentation is available on readthedocs.org.

Contents 1

http://chapel-lang.org/
http://sphinx-doc.org/

Chapel Domain Documentation, Release 0.0.15

2 Contents

CHAPTER 1

Installation

To install:

pip install sphinxcontrib-chapeldomain

To install from source on github:

git clone https://github.com/chapel-lang/sphinxcontrib-chapeldomain
cd sphinxcontrib-chapeldomain
python setup.py install

3

https://github.com/chapel-lang/sphinxcontrib-chapeldomain

Chapel Domain Documentation, Release 0.0.15

4 Chapter 1. Installation

CHAPTER 2

Getting Started

See the Chapel Domain Reference for a description of directives and roles provided by this domain.

For tips on developing the chapel domain (as opposed to using the directives), see the developer documentation.

Contents:

• genindex

• modindex

• search

Chapel Domain Reference

The Chapel domain (named chpl) provides the directives outlined in this document.

The Chapel domain is strongly influenced by the Python domain that comes with Sphinx. In addition, this documen-
tation takes cues from the documentation on Sphinx domain support, including Python domains.

Module Directives

.. chpl:module:: name
This directive marks the beginning of the description of a module. It does not create content (like e.g.
chpl:class does).

This directive will also cause an entry in the global module index.

The synopsis option should consist of one sentence describing the module’s purpose. it is currently only
used in the Global Module Index.

The platform option, if present, is a comma-separated list of the platforms on which the module is available.
If it is available on all platforms, the option should be omitted.

The deprecated option can be given (with no value) to mark a module as deprecated. It will then be desig-
nated as such in various locations.

.. chpl:currentmodule:: name
This directive tells Sphinx that the classes, functions, etc documented from here are in the given module (sim-
ilar to chpl:module), but it will not create index entries, an entry in the Global Module Index, or a link
target for chpl:mod. This is helpful in situations where documentation for a module’s content is spread
over multiple files or sections. One location needs to have chpl:module directive, and the others can have
chpl:currentmodule.

5

http://sphinx-doc.org/domains.html#the-python-domain

Chapel Domain Documentation, Release 0.0.15

Module and Class Contents

The following directives are provided for module and class contents.

.. chpl:function:: signature
Describes a module-level function. The signature should include the arguments as given in the Chapel definition.
See Chapel Signatures for details.

For example:

.. chpl:function:: factorial(x: int) : int

For iterators, see chpl:iterfunction. For methods and method iterators, see chpl:method and
chpl:itermethod respectively.

The description normally includes information about the arguments required, how they are used, side effects,
return type, and return description.

This information can (in any chpl directive) optionally be given in a structured form, see Info field lists.

.. chpl:iterfunction:: signature
Describes a module-level iterator. The description should be similar to chpl:function.

For example, this would document a module with a proc and an iter:

.. chpl:module:: GMP
:synopsis: multiple precision integer library

.. chpl:function:: proc factorial(n: int): BigNum

Calculate and return ``n!``. Since this can result in very large
numbers, the final result is returned as a :chpl:class:`BigNum`.

:param n: nth factorial to calculate
:type n: int
:rtype: BigNum
:returns: ``n!``
:throw TimeoutError: if the the computation takes too long

.. chpl:iterfunction:: iter fibonacci(): BigNum

Yield fibonacci numbers infinitely. It is up to caller to break
iteration.

Often called with :chpl:proc:`zip` to track current number. For
example:

.. code-block:: chapel

for value, n in zip(fibonacci(), 1..) do
writeln("fibonacci(", n, ") = ", value);

:ytype: BigNum
:yields: fibonacci numbers

.. chpl:data:: signature
Describes global data in a module including const, var, param, config const, etc. Class, record, and
instance attributes are not documented using this environment.

.. chpl:type:: signature

6 Chapter 2. Getting Started

Chapel Domain Documentation, Release 0.0.15

Describes global type in module. Generic types for classes and records are not documented using this environ-
ment (see chpl:attribute for that).

.. chpl:enum:: signature
Describes enumerated type in module, including the constants. For example:

.. chpl:enum:: Color { Red, Yellow, Blue }

Supported colors.

.. chpl:enum:: Weekdays { Sun=0, Mon, Tue, Wed, Thu, Fri, Sat }

Days for the week. The values associated with the constants can be
used with Date records.

.. chpl:class:: signature
Describe a class. The signature can optionally include parentheses with arguments which will be shown as the
constructor arguments. See also Chapel Signatures.

Methods and attributes belonging to the class should be placed in this directive’s body. If they are placed outside,
the supplied name should contain the class name so that cross-references still work.

For example:

.. chpl:class:: Foo

.. chpl:method:: bar()

or:

.. chpl:class:: Bar

.. chpl:method:: Bar.baz()

The first way is the preferred one.

.. chpl:record:: signature
Records work the same as chpl:class.

.. chpl:attribute:: signature
Describes an object data attribute. This can be a param, const, var, type, etc. The description should
include information about the type of the data to be expected and whether it may be changed directly.

.. chpl:method:: signature
Describes an object instance method (for chpl:class or chpl:record). The description should include
similar information to that described for chpl:function. See also Chapel Signatures and Info field lists.

.. chpl:itermethod:: signature
Describes an object instance iterator method (for chpl:class or chpl:record). The description should
be similar to chpl:iterfunction.

Chapel Signatures

Signatures of functions, methods, classes, records, iterators, etc can be specified similar to how they would be written
in Chapel.

Default values for optional arguments can be given. Signatures can also include their declarations, return types, and
return intents. For example:

2.1. Chapel Domain Reference 7

Chapel Domain Documentation, Release 0.0.15

.. function:: inline proc foo()

.. iterfunction:: inline iter bar() ref

.. function:: proc baz(ref x) const

.. data:: config const n: int

.. type:: type T = domain(3, int, true)

.. attribute:: param MyMod.MyClass.communicative: bool = false

.. itermethod:: iter MyMod.MyClass.these(): string

Info field lists

Inside Chapel description directives, ReST field lists with these fields are recognized and formatted nicely:

• param, parameter, arg, argument: Description of a parameter.

• type: Type of a parameter. Creates a link if possible.

• returns, return: Description of the return value.

• rtype: Return type. Creates a link if possible.

• yields, yield: Description of the yield value, often used for iterators.

• ytype: Yield type. Creates a link if possible.

For param, arg, type, etc a field name must consist of one of the keywords and an argument. returns, rtype,
yields, ytype, do not need an argument. See example:

.. chpl:module:: GMP
:synopsis: multiple precision integer library

.. chpl:record:: BigNum

multiple precision instances

.. chpl:method:: proc add(a:BigNum, b:BigNum)

Add two big ints, ``a`` and ``b``, and store the result in ``this``
instance.

:arg a: BigNum to be added
:type a: BigNum

:arg BigNum b: BigNum to be added

:returns: nothing, result is stored in current instance

.. chpl:itermethod:: iter these() ref

Arbitrary iterator that returns individual digits of this instance.

:ytype: reference
:yields: reference to each individual digit of BigNum

The above will render like this:

8 Chapter 2. Getting Started

Chapel Domain Documentation, Release 0.0.15

record BigNum
multiple precision instances

proc add(a:BigNum, b:BigNum)
Add two big ints, a and b, and store the result in this instance.

Arguments

• a : BigNum – BigNum to be added

• b : BigNum – BigNum to be added

Returns nothing, result is stored in current instance

iter these() ref
Arbitrary iterator that returns individual digits of this instance.

Yield type reference

Yields reference to each individual digit of BigNum

Note that it is possible to combine the arg and type fields into a single arg field, like :arg BigNum b:. The
same is true for param fields.

Cross-referencing Chapel objects

The following roles refer to objects in modules and are possibly hyperlinked if a matching identifier is found:

:chpl:mod:
Reference a module; a dotted name may be used. See Cross-reference Contents for details on dotted and non-
dotted names.

:chpl:proc:
:chpl:iter:

Reference a Chapel function or iterator. The role text needs not include trailing parentheses to enhance read-
ability.

These can also be used to reference a method or iterator on an object (class or record instance). The role text
can include the type name and the method, in those cases. If it occurs within the description of a type, the type
name can be omitted.

Dotted names may be used for any form.

:chpl:data:
:chpl:const:
:chpl:var:
:chpl:param:
:chpl:type:

Reference a module-level variable, constant, compiler param, or type.

:chpl:class:
:chpl:record:

Reference a class or record; a dotted name may be used.

:chpl:attr:
Reference a data attribute (const, var, param, generic type) of an object.

:chpl:chplref:
Special Chapel reference, which acts just like :ref:. Used to cross-reference the “Chapel Module Index”. For
example:

2.1. Chapel Domain Reference 9

Chapel Domain Documentation, Release 0.0.15

* :chpl:chplref:`chplmodindex`

* :chpl:chplref:`The module index <chplmodindex>`

Or, with the default-domain or primary_domain set to chpl:

For example, see all modules in the :chplref:`chplmodindex`.

New in version 0.0.3.

Warning: chplmodindex is a special name, like modindex, genindex, and search. Do not create
documents named chplmodindex, as it will cause problems.

Cross-reference Contents

The name enclosed in this markup can include a module name and/or a class or record name. For example,
:chpl:proc:‘writeln‘ could refer to a function named writeln in the current module, or the built-in func-
tion of that name. In contrast, :chpl:proc:‘Foo.writeln‘ clearly refers to the writeln function in the Foo
module.

Normally, names in these roles are searched first without any further qualification, then with the current module name
prepended, then with the current module and class name (if any) prepended. If you prefix the name with a dot, this
order is reserved. For example, in the documentation of the IO module, :chpl:proc:‘writeln‘ always refers
to the built-in function, while :chpl:proc:‘.writeln‘ refers to IO.writeln.

For example, here is a description with both a non-dotted and a dotted cross-reference:

.. module:: IO

.. class:: channel

.. method:: read()

Description...
example 1 --> :chpl:proc:`writeln`
example 2 --> :chpl:proc:`.writeln`

Example 1 will search for writeln cross-reference in this order:

1. writeln: built-in function

2. IO.writeln: writeln defined in IO module

3. IO.channel.writeln: writeln defined on IO.channel class

Example 2 will search for writeln cross-reference in the opposite order, because it is dotted:

1. IO.channel.writeln: writeln defined on IO.channel class

2. IO.writeln: writeln defined in IO module

3. writeln: built-in function

A similar heuristic is used to determine whether the name is an attribute of the currently documented class.

Also, if the name is prefixed with a dot, and no exact match is found, the target is taken as a suffix and all
object names with that suffix are searched. For example, :chpl:meth:‘.channel.read‘ references the
IO.channel.read() function, even if the current module is not IO. Since this can get ambiguous, if there is
more than one possible match, you will get a warning from Sphinx.

10 Chapter 2. Getting Started

Chapel Domain Documentation, Release 0.0.15

When ~ prefix is added to the cross-reference, the visible link will only display the leaf. For example,
:chpl:meth:‘~IO.channel.read‘will display as read and still reference IO.channel.read()method.

Note that you can combine the ~ and . prefixes. :chpl:meth:‘~.channel.read‘ will reference the
IO.channel.read() method, but the visible link caption will only be read.

Sphinx Configuration

This section lists additional configuration values that are added to the “build configuration file”, i.e. conf.py, when
using the Chapel domain.

chapeldomain_modindex_common_prefix
A list of prefixes that are ignored for sorting the Chapel module index (e.g. if this is set to [’foo.’], then
foo.bar module is shown under B, instead of F). This is useful when documenting a project that consists of a
single package. Currently only works for the HTML builder. Default is [].

New in version 0.0.3.

Developer Documentation

This document describes the tools and practices used to develop the Chapel domain.

Overview

• Fork the repo on github.

• Create a well named branch.

• Run testing.

• Submit pull request.

• Email or @mention the team in the comments.

git clone <url_for_fork>
cd sphinxcontrib-chapeldomain/
git checkout -b <branch_name>
pip install -r requirements.txt -r test-requirements.txt
... develop ...
tox

Testing

Travis runs the tests automically and records code coverage in Coveralls. On a local workstation, tox can be used to
run the tests in a similar fashion.

tox # run unittests with py27, py34
tox -e flake8 # flake8 source code checker
tox -e coverage # run code coverage analysis
tox -e docs # verify the docs build
tox -e doc-test # verify the acceptance tests build

2.2. Developer Documentation 11

https://github.com/chapel-lang/sphinxcontrib-chapeldomain
https://travis-ci.org/chapel-lang/sphinxcontrib-chapeldomain
https://coveralls.io/r/chapel-lang/sphinxcontrib-chapeldomain?branch=master
https://tox.readthedocs.org/en/latest/

Chapel Domain Documentation, Release 0.0.15

Release

To release the latest sources on PyPI and tag the repo, update your working copy to the latest master, then use the
util/release.bash script:

git checkout master
git pull https://github.com/chapel-lang/sphinxcontrib-chapeldomain master
./util/release.bash

The script does the following:

• Ensure the current branch is master.

• Ensure it is run inside a virtualenv.

• Discover the version, using python setup.py --version.

• Install the regular, docs, and test requirements.

• Install the package in develop mode.

• Run tox against several environments.

• Tag the tip of master with the version number, and push the tag to the remote.

• Clean the repo.

• Run the python package build and upload to PyPI.

12 Chapter 2. Getting Started

https://pypi.python.org/pypi/sphinxcontrib-chapeldomain

Python Module Index

s
sphinxcontrib.chapeldomain, 3

13

Chapel Domain Documentation, Release 0.0.15

14 Python Module Index

Index

C
chapeldomain_modindex_common_prefix (built-in vari-

able), 11
chpl:attr (role), 9
chpl:attribute (directive), 7
chpl:chplref (role), 9
chpl:class (directive), 7
chpl:class (role), 9
chpl:const (role), 9
chpl:currentmodule (directive), 5
chpl:data (directive), 6
chpl:data (role), 9
chpl:enum (directive), 7
chpl:function (directive), 6
chpl:iter (role), 9
chpl:iterfunction (directive), 6
chpl:itermethod (directive), 7
chpl:method (directive), 7
chpl:mod (role), 9
chpl:module (directive), 5
chpl:param (role), 9
chpl:proc (role), 9
chpl:record (directive), 7
chpl:record (role), 9
chpl:type (directive), 6
chpl:type (role), 9
chpl:var (role), 9

S
sphinxcontrib.chapeldomain (module), 1

15

	Installation
	Getting Started
	Chapel Domain Reference
	Developer Documentation

	Python Module Index

